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Abstract Estimation of design power requires knowledge of treatment effect size and
error variance, which are often unavailable for ecological studies. In the absence of
prior information on these parameters, investigators can compare an alternative to a
reference design for the same treatment(s) in terms of its precision at equal sensi-
tivity. This measure of relative performance calculates the fractional error variance
allowed of the alternative for it to just match the power of the reference. Although
first suggested as a design tool in the 1950s, it has received little analysis and no
uptake by environmental scientists or ecologists. We calibrate relative performance
against the better known criterion of relative efficiency, in order to reveal its unique
advantage in controlling sensitivity when considering the precision of estimates. The
two measures differ strongly for designs with low replication. For any given design,
relative performance at least doubles with each doubling of effective sample size. We
show that relative performance is robustly approximated by the ratio of reference to
alternative α quantiles of the F distribution, multiplied by the ratio of alternative to
reference effective sample sizes. The proxy is easy to calculate, and consistent with
exact measures. Approximate or exact measurement of relative performance serves
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a useful purpose in enumerating trade-offs between error variance and error degrees
of freedom when considering whether to block random variation or to sample from a
more or less restricted domain.

Keywords ANOVA mixed models · Experimental design · Power analysis ·
Sensitivity analysis · Significance test · Statistical power

1 Introduction

Power analysis is used to find the number of observations or the level of background
variation that will allow a reasonable probability of detecting a threshold size of
effect (Rasch and Herrendörfer 1986; Kraemer and Thiemann 1987). For example, a
forester may wish to know whether a fungicide is cost effective. Randomised trials of
the treatment against a control can test whether the difference in yield caused by the
fungicide is likely to pay for the cost of its application. A good study will choose a
sample size that has acceptable power to detect the threshold effect size of interest,
which in this case is a difference in yield that is worth as much as the treatment
costs. A significant result then tells the investigator that the fungicide is cost effective,
within an accepted threshold probability α of making a Type-I error in rejecting a
true null hypothesis (often set at 0.05). Alternatively a non-significant result tells
the investigator that the fungicide is not cost effective, within an accepted threshold
probability β of making a Type-II error in failing to reject a false null hypothesis
(where β = 1 − power).

The probability of failing to reject a false null hypothesis declines exponentially as
a function of sample size (Verrill and Durst 2005), which can create a sharply defined
boundary between unsuccessful and successful experiments. Funding councils and
research journals increasingly require power calculations to justify the sample sizes of
experimental animals or field plots, or other resources. Power analysis is problematic,
however, for exploratory studies that have no context for setting a minimum effect size
of interest, because the calculation of power requires the unavailable measure of effect
size. Power calculation also requires knowledge of the structure and magnitude of error
variation, which depend on the choice of study design. For a laboratory experiment,
the experimenter may wish to consider alternative treatment procedures for grouping
or blocking nuisance variation due to the apparatus. For a field study, the investigator
may need to know how the replication between and within sites influences the balance
of sensitivities to treatment effects and to regional generality. The aim of this paper is
to provide design tools for comparing alternative error structures, which are applicable
particularly to exploratory studies with a focus on detecting presence or absence of
treatment effects.

Empirical studies often present alternative options for blocking nuisance varia-
tion, in the laboratory at the stage of designing experimental facilities, or in the
field when seeking candidate sites. Blocking is intended to reduce the error vari-
ance, but it also reduces the error degrees of freedom (d.f.). The first effect increases
power (assuming normality); the second generally reduces it (though not always
monotonically: Blair et al. 1994). Traditional comparisons between designs focus
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on the relative efficiency of the mean, which evaluates the reduction in error vari-
ance achieved by blocking. It provides the appropriate information to choose a study
design and sample size when decisions are based on the precision of the mean.
The concept of relative performance broadens the scope of relative efficiency by
controlling sensitivity in the comparison of two study designs. It compares alter-
native designs with different error d.f. by computing the change in error variance
required to sustain the power of the test. It addresses the question, “if one design
is sufficiently powerful to detect a specified treatment effect, will another have at
least as good a chance of doing so?”. Cochran and Cox (1957) were the first to
propose controlling the confidence interval width or the power. Others have com-
pared efficiency at constant power for particular designs (e.g., Abou-el-Fittouh 1976,
1978; Vonesh 1983; Shieh and Show-Li 2004; Wang and Hering 2005); all have
had negligible uptake in the ecological and environmental literature, due partly to
the difficulty of exact calculation. Despite a resurgent interest in sensitivity analy-
sis (Bacchetti 2010; Lai and Kelley 2012) and in accuracy of parameter estima-
tion (Maxwell et al. 2008; Webb et al. 2010), studies rarely evaluate alternative
options for absorbing or controlling error variation in terms of design sensitivity.
To date no general analysis and guidance exists for comparing performance at equal
power.

Here we provide the first formal comparison of relative performance to relative
efficiency, and we develop an easy-to-use proxy for calculating relative performance.
We show that the usual adjustment to relative efficiency to account for differences
in d.f. is poor at controlling power for designs with few samples and little within-
sample replication. Because relative performance explicitly controls power, it is well
suited to comparing design options at the planning stage for a study. We consider
alternative designs for analysis of variance on the same treatment or treatment com-
bination against a null hypothesis of zero effect. With the same test hypothesis for
both designs, we nominate an acceptable level of power against which to evaluate
the performance of one design relative to the other in absorbing or controlling ran-
dom variation within the study population. The resulting measures of relative perfor-
mance have an advantage over conventional power analysis in permitting objective
comparisons without need of predefined sizes for treatment effect and error vari-
ance. The price of accommodating this level of ignorance is that designs can only
be compared at matching power and cannot be optimised for power. In this article
we evaluate the utility of approximate and exact relative performance for compar-
isons between alternative study designs for the same treatment and population of
interest.

1.1 Motivating example

Consider the hypothesis that elevated atmospheric CO2 has an interactive effect
with soil N on growth of poplar seedlings. Suppose that an experimental test of
the CO2 × N interaction can be done in controlled environment rooms on individ-
ually potted seedlings of similar age that sample a population of known source.
The test of treatment interactions presents several design options. One is to use 12

123



242 Environ Ecol Stat (2014) 21:239–261

rooms, in a fully randomized (FR) allocation of three rooms to each of the four
combinations of elevated or ambient N with elevated or ambient CO2, and r repli-
cate pots in each room. Using r = 4 replicates would give this design a power
of 0.86 to detect a treatment interaction that has a unitary standardized effect size
(θ/σ = 1, as defined in the next section) for analysis of variance with p = 1
test d.f. and q = 8 error d.f. and threshold Type-I error α = 0.05. An alterna-
tive option is to use six rooms, in a mixed-model split-plot (MM-SP) allocation
of three rooms to each level of CO2. With each room taking r pots at each of
elevated and ambient N, this option also uses 12r pots in total, and has q = 4
error d.f.

In studies of this sort it is common to have no prior effect size of interest or knowl-
edge of the magnitude of error variance. Comparison between alternative designs is
nevertheless informed by calculating the relative sizes of error variances for one design
to match the other in its power to detect the treatment interaction of interest. For the
question of how best to distribute treatments in the controlled-environment study, we
can estimate the performance of the MM-SP design relative to the FR at a reasonable
power, say of 0.80. We then find that the MM-SP sustains power only if the blocking
by room reduces the error variance to ∼ 69 % of its FR value. We will show that
this approximation obtains from q F(0.95, 1, 8)/q F(0.95, 1, 4) = 5.32/7.71 = 0.69
where q F(1 − α, p, q) is the α quantile of the F distribution. Conversely, an MM-
SP design with ∼ 1.45 times more pots can sustain the same error variance as the
FR without loss of power, obtained from q F(0.95, 1, 4)/q F(0.95, 1, 8) = 1.45.
For a conservative expectation of no difference in error variance between the two
options, the investigator can now evaluate relative costs and savings of grow-
ing 45 % more seedlings whilst deploying half as many controlled environment
rooms. These various scenarios quantify the trade-offs amongst design options that
inform planning decisions. If preliminary data can be collected, they inform design
of the pilot study.

Field studies often use random factors expressly to investigate the generality of
effects at different spatial and temporal scales. In such cases, the type of design
is generally fixed by the treatment(s) and in situ population of interest, and design
considerations focus on optimising the amount of replication at relevant scales.
For example the CO2-by-N effect on plant growth can be tested in the field on
adult trees using CO2 ring diffusers in forest plots, in which case the mixed-
model split-plot design needs a further split to incorporate a site block. It then
calibrates the treatment effects against within-treatment variation between sites,
between plots within sites, and between trees within plots. Distributing the diffusers
across more replicate sites has the advantage of raising the error d.f., though at the
likely cost of also raising the error variance. To quantify this trade-off requires a
prospective calculation of relative performance on alternative numbers of replicate
sites and plots.

The following sections develop the concept of relative performance, define the
method of approximating it from ratios of critical F quantiles, and illustrate applica-
tions with worked examples.
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2 Methods

2.1 Relative efficiency

Relative efficiency is the relative amount of information about the mean provided by a
single observation from each of two designs (Neyman et al. 1935; Fisher 1935). For an
observation from a random variable with a normal distribution with variance σ 2, the
Fisher information is 1/σ 2, so the relative efficiency is the ratio of the error variances
(Cochran and Cox 1957; Steel and Torrie 1960). For example, a blocked design such
as a randomized split plot has relative efficiency as an alternative to a fully randomized
reference design:

RE = σ 2
re f

σ 2
alt

. (1)

Here and throughout the paper, σ 2 refers to the quantity that is estimated in the study
by the error mean square due to treatment replication (e.g., of laboratory rooms, or of
field sites in the motivating examples), which includes variance components from any
nested factors.

Equation (1) does not involve the d.f. associated with each error variance because
relative efficiency is based on the information about the mean contributed by a data
point from a normal distribution with specified variance. The usual degree of freedom
adjustment considers the information provided by a single observation from a random
variable with a t-distribution at q d.f. (Fisher 1960, pp. 242–244). That information is
(q + 1)/[(q + 3)σ 2], giving an adjusted relative efficiency of:

REadj = σ 2
re f

σ 2
alt

×
(

qre f + 3

qre f + 1
×qalt + 1

qalt + 3

)
. (2)

2.2 Power calculation for an F test

Statistical power equals 1−β, where β is the type-II error rate of retaining a false null
hypothesis. The power of an F test to detect a true effect of a fixed treatment depends on
the error variance σ 2, the effective sample size n, and the variability among treatment
population means (e.g., Kirk 1982). Specifically, power increases monotonically with
the non-centrality parameter, λ = n · ∑a

(μi − μ)2/σ 2, where a is the number of
treatments, μi is the population treatment mean for treatment i , and μ is the average
of the a population treatment means. The effective sample size n equals the product of
all of the variables contributing to the total d.f. of the model that do not also contribute
to the p of the treatment term. For a given λ, p, q and α, power can be calculated
directly from a non-central F-distribution using any of the many available computer
programs, web applets or statistical tables.

The treatment effect size θ is the square root of the treatment-only variability per

degree of freedom (e.g., Lenth 2006): θ = (∑a
(μi − μ)2/p

)0.5
. For the simplest

case of a two-level treatment, θ = (μ1 − μ2)/
√

2.
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2.3 Relative performance

For a given treatment and population of interest, we define the performance of an
alternative design relative to a reference design as the ratio of expected error variances,
σ 2

alt/σ
2
re f , for which the two designs have the same power. The expected error variances

σ 2
alt and σ 2

re f for alternative and reference designs respectively are each estimated by
the design-specific error mean square in the denominator of the F test statistic for the
treatment effect. In the motivating example, the MM-SP design had a performance of
∼69 % relative to the FR design with the same total number of pots. The MM-SP is
therefore a poor alternative if its blocks are expected to reduce the error variance by
less than 31 %, and a good choice if the expectation exceeds 31 %. We will show in
the Results that using twice as many pots in the MM-SP design doubles its relative
performance to 138 %. This will be a good choice if it is expected to have similar error
variance to the FR design, and a cost-effective choice if the cost of twice as many pots
is outweighed by the saving in using half as many rooms.

Different designs are comparable in terms of relative performance only when ref-
erence and alternative options test the same set of hypotheses. This means that they
must (i) apply the same fixed treatment(s), and therefore have the same effect size; (ii)
allocate treatment levels to the same scale(s) of sampling unit (i.e., rooms and pots in
the example of laboratory options, sites and plots in the example of field options); (iii)
measure the response from the same population of interest (i.e., genotype or genotype
mix, with seedlings for the laboratory experiment randomly sampled from a definable
source, or trees for the field experiment sampled by the random site variable from
across a definable region).

Relative performance is cumbersome to calculate because it requires finding the
error variances that give reference and alternative design equal power. We therefore
present an approximation of relative performance that is easily calculated from stan-
dard tables. The approximate relative performance is given by the ratio of critical
F quantiles for reference and alternative models, weighted by the ratio of effective
sample sizes:

RPF-approx = q F
(
1 − α, p, qre f

)
q F (1 − α, p, qalt )

× nalt

nre f
. (3)

Here q F(1−α, p, q) is the α quantile of the F distribution with p numerator d.f. and q
denominator d.f., readily available from tables or statistical programs. The derivation
of the approximation is given in the “Appendix”. Its use of the F distribution means
that it applies only to analyses with homogeneous variances across samples and a
normal distribution of each error term.

We evaluate the quality of this approximation for a range of designs by comparing
RPF-approx to its exact equivalent given by the non-central F distribution. The appli-
cations Piface (Lenth 2006), G*Power 3 (Faul et al. 2007) and R (R Development
Core Team 2010) were used to identify design-specific non-centrality parameters, λ,
for a range of power values. These yielded the error fractions σ 2

alt/σ
2
re f for which two

designs have precisely the same power. These calculations of power use a type-I error
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rate α = 0.05. A smaller value such as α = 0.01 lowers performances of alterna-
tive relative to reference designs. The reduction is uniform across magnitudes of β,
however, with the result that the RPF-approx is no less effective at lower α. Computer
program Performance calculates RPF-approx from inputs of n and test and error d.f. It
is available from: http://www.personal.soton.ac.uk/cpd/anovas/datasets/Performance.
exe.

Comparisons of relative performance will be illustrated with two commonly used
alternatives to fully randomized (FR) designs: (i) randomized complete block (CB),
and (ii) split-plot (SP), either of which can be fully replicated in a mixed model
(MM). We consider balanced designs of one-way treatment structures and of two-
way complete factorial treatment structures. Figure 1 illustrates the layout of each of
the principal designs, and Table 1 summarizes their models for analysis of variance.
Although the model comparisons for two-factor designs focus on treatment interac-
tions, relative performance applies equally to main effects. The method can anticipate
model simplification by pooling of error terms, though these post hoc analyses are not
considered in our examples.

3 Results

3.1 Comparison of relative efficiency and relative performance

Reference and alternative designs have the same Fisher-adjusted relative efficiency
when (from Eq. 2):

σ 2
re f

σ 2
alt

×
(

qre f + 3

qre f + 1
×qalt + 1

qalt + 3

)
= 1. (4)

The same two designs will have approximately the same power to detect a specified
treatment effect when (from Eq. 3):

σ 2
re f

σ 2
alt

×
(

q F
(
1 − α, p, qre f

)
q F (1 − α, p, qalt )

× nalt

nre f

)
= 1. (5)

The two approaches can be compared in two ways: (i) Compare their adjust-
ment factors, i.e. the quantities within the outer parentheses of Eqs. 4 and 5,
for two designs across a range of treatment levels and effective sample sizes;
(ii) Use the Fisher degrees-of-freedom adjustment to compute the σ 2

alt that gives
the two designs the same relative efficiency, find the non-centrality parameter
that provides a specified power for the reference design, then use that σ 2

alt and
non-centrality parameter to find the power of the alternative design. If Fisher-
adjusted relative efficiency and relative performance are similar, the two adjust-
ment factors computed in approach (i) will be similar and the power com-
puted in approach (ii) will be similar to the specified power for the reference
design.

123

http://www.personal.soton.ac.uk/cpd/anovas/datasets/Performance.exe
http://www.personal.soton.ac.uk/cpd/anovas/datasets/Performance.exe


246 Environ Ecol Stat (2014) 21:239–261

A1 A2 

 S1 S2 S3 S4 S5 S6

A1   

A2 

 S1 S2 S3 S4 S5 S6

A1  

A2

A1B1 A2B2 

A2B1 A1B2 

 S1 S2 S3 S4 S5 S6

 A2B2 A1B1

A2B1 A1B2

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

A1B2 A2B1 

A1B1 A2B2 

a
b

c

d

e

f

Fig. 1 Example layouts of spatial designs for analysis of variance, with each cell representing an observation
on a sampling unit. All have s = 6 treatment replicates, in (a) to (c) at each of a = 2 levels for testing
treatment factor A; in (d) to (f) at each of b·a = 4 combinations of levels of treatment factors A and B for
testing the B×A interaction. Double lines surround a set of sampling units with a randomized allocation of
treatments. Grey: A1, white: A2; hatched lines: B1, no hatching: B2. a One factor FR design S′

6(A2) : Y =
A+S′(A). b One factor CB design S′

6|A2 : Y = S′ +A+S′ ×A. c One factor MM-CB design R′
2(S′

6|A2) :
Y = S′+A+S′×A+R′(S′×A). d Two factor FR design S′

6(B2|A2) : Y = A+B+B×A+S(B×A). e Two
factor MM-CB design R′

2(S′
6|B2|A2) : Y = A+B+B×A+S′ ×A+S′ ×B+S′ ×B×A+R(S′ ×B×A).

f Two factor MM-SP design R′
2(B2|S′

6(A2)) : Y = A + S′(A) + B + B × S′(A) + R′(B × S′(A))
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Table 2 Comparison between adjusted relative efficiency (REad j ) and approximate relative performance
(RPF-approx) for a FR reference design R′

r (S′
s (Aa)) and a CB alternative design R′

r (S′
s |Aa), both having

the same number of treatment levels a and treatment replication s

s a. Adjustment factora b. Power of CB at REad j = 1b

REad j RPF-approx ralt /rre f = 1 ralt /rre f = 0.5

Treatment levels a = 2

3 0.840 0.416 × ralt /rre f 0.5818 0.3697

5 0.873 0.690 × ralt /rre f 0.7275 0.4547

20 0.956 0.935 × ralt /rre f 0.7967 0.5057

100 0.990 0.988 × ralt /rre f 0.7999 0.5086

Treatment levels a = 3

3 0.918 0.741 × ralt /rre f 0.7120 0.4317

5 0.944 0.871 × ralt /rre f 0.7659 0.4626

20 0.984 0.974 × ralt /rre f 0.7955 0.4840

Treatment levels a = 5

3 0.967 0.906 × ralt /rre f 0.7639 0.4467

5 0.980 0.953 × ralt /rre f 0.7829 0.4553

20 0.995 0.990 × ralt /rre f 0.7967 0.4647

Treatment levels a = 10

3 0.991 0.974 × ralt /rre f 0.7857 0.4377

5 0.995 0.987 × ralt /rre f 0.7922 0.4392

20 0.999 0.997 × ralt /rre f 0.7981 0.4428

a Adjustment factors are the quantities in parentheses in main-text Eq. (4) for REad j , and Eq. (5) for
RPF-approx (at α = 0.05 and given n = r ·s)
b The power of the alternative design at an adjusted relative efficiency of 1, computed for a reference power
of 0.80 at α = 0.05

Table 2 gives results for a randomized complete block relative to a fully random-
ized design with the same 2–10 treatment levels and treatment replication varying
from 3 to 100. Table 2(a) shows that the Fisher adjustment factor is always closer
to 1.0 than is the relative performance adjustment. The two values are close to each
other and close to 1.0 for large numbers of treatment levels and for high treatment
replication, and when ralt = rre f . Table 2(b) shows that the power of an alterna-
tive design with relative efficiency = 1 is less than the reference power of 0.80 when
ralt = rre f . It is much less when both designs have low treatment replication (e.g.,
alternative power = 0.58 for 2 treatments and 3 blocks) or whenever ralt < rre f .
More extreme disparities are seen for α = 0.01 (data not shown). These differ-
ences reinforce the point that “the ERE [estimated relative efficiency] speaks only
to the question of estimation, i.e. precision of estimates, and not to the question
of power, i.e. sensitivity of the experiment” (Hinkelmann and Kempthorne 1994,
p. 262).
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3.2 Relative performance for alternative designs

Here we compare relative performance for situations where the investigator has options
amongst two or more different designs to test fixed treatment effects on a population
of interest. This is often the case in laboratory manipulations of samples from a known
population, where decisions must be made about cost-effective ways to block nuisance
variation due to the experimental conditions.

Figure 2 illustrates relative performances for three blocked designs as alternatives
to FR references with the same effective sample size, n. The relative performance
of the alternative design is calculated at precisely equal power (coloured dots), and
approximated from ratios of critical F quantiles with RPF-approx (open circles). For
both CB and SP alternatives to FR designs, RPF-approx closely tracks the precise relative
performance at power = 0.8 with low replication, increasing to 0.99 and higher with
more replication.

In general, RPF-approx slightly overvalues the relative performance of blocks in
sustaining high power at large p, and the more so for designs with small n. The 3×3
CB alternative to the FR illustrates this in Fig. 2b, where the middle open circle for
a = b = 3 (so p = 4) and s = 2 shows RPF-approx corresponding to the error fraction
required to match a power of only 0.5 (middle red dot). Nevertheless, its approximation
of 57 % for this error fraction is little greater than the 53 % allowed to match a power of
0.8 (middle green dot). For the 5×5 CB and SP designs (p = 16), RPF-approx slightly
overvalues relative performance for any equal powers (except power = α; Fig. 2a–c
upper open circles), though negligibly so at high treatment replication. For these
designs with high test d.f., particularly when combined with low n, a more conservative
proxy is given by the ratio [q F(1 − α, p, qre f ) − 1]/[q F(1 − α, p, qalt ) − 1]. The
“Appendix” gives the rationale for using this adjusted RPF-approx for p > 10.

To illustrate the application of relative performance, consider the motivating exam-
ple of a two factor experiment to be carried out in controlled environment rooms. The
reference is a nested-FR design: R′

r (S
′
s(Bb|Aa)) using the nomenclature of Table 1

and Fig. 1. The alternative is a MM-SP design: R′
r (Bb|S′

s(Aa)). With treatments A
and B taking two levels, so a = b = 2, and treatment replication of s = 3 rooms,
the two designs have 8 and 4 error d.f. respectively for testing the interaction. If
both have the same r replicate pots, and therefore the same effective sample size
n = r ·s the RPF-approx is q F(0.95, 1, 8)/q F(0.95, 1, 4) = 5.32/7.71 = 0.69,
shown in Fig. 2c by the lower open circle at {3, 0.69}. Accordingly, exact power
analyses stipulate that the SP design must have an error variance 69–72 % that of
the FR to match reference powers of 0.99–0.80, shown in Fig. 2c by the lower
blue dot at {3, 0.69} and lower green dot at {3, 0.72}. If the designs have dif-
ferent r , these relative performances change by ralt/rre f . Though not graphed, the
RPF-approx of Eq. 3 applies also to comparisons of different s. For example, a MM-SP
using s = 4 rooms as an alternative to a 3-room FR design (with the same r ) has
RPF-approx = q F(0.95, 1, 8)/q F(0.95, 1, 6)×4/3 = 1.18.

If we set a threshold of equal error variances between the two designs, then relative
performance takes a value of 1 and we can explore options for increasing the effective
sample size to sustain 80 % power. This is done by rearranging Eq. (3):
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Fig. 2 Relative performance at α = 0.05, measured as the error fraction σ 2
alt /σ

2
re f required of an alternative

design to equal the power (1−β) of a fully randomized reference design to detect the same treatment with the
same effective samples size n = r ·s. The three groups of lines per graph show results for A in (a), and B×A in
(b–c) with 2, 3 and 5 treatment levels; within each group, lower to upper line shows power = 0.99 (blue), 0.8
(green), 0.5 (red), 0.2 (gold). Open circles are the approximate relative performance RPF-approx = q F(1−
α, p, qre f )/q F(1 − α, p, qalt ). For designs with different r , relative performances must be multiplied by
ralt /rre f . For example, the performance of R′

3(S′
5|A2) relative to S′

5(A2) at power = 0.8 is three times the
exact value of 0.72 showing in (a), and the corresponding RPF-approx is three times the value showing of
0.69. a CB design R′

r (S′
s |Aa) versus FR design R′

r (S′
s (Aa)). b CB design R′

r (S′
s |Bb|Aa) versus FR design

R′
r (S′

s (Bb|Aa)). c SP design R′
r (Bb|S′

s (Aa)) versus FR design R′
r (S′

s (Bb|Aa))

nalt

nre f
= q F (1 − α, p, qalt )

q F
(
1 − α, p, qre f

) , at RPF-approx = 1. (6)

In the motivating example, each design has its own n = r ·s, and both use s = 3
rooms. With nalt/nre f = q F(0.95, 1, 4)/q F(0.95, 1, 8) = 1.45, the MM-SP design
sustains power by having 1.45 times more pots.

Figure 2 permits generic comparisons of alternative blocking designs. The dif-
ference between blocking by CB and by SP diminishes with more replicates, as all
approach 100 % performance. A high enough replication will therefore yield power
advantages to any kind of blocking even when blocks are likely to absorb little back-
ground variation. This result is consistent with simulations designed to explore the
value of blocking (Legendre et al. 2004). The relative performance of the SP (or
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Fig. 3 Error fractions required of CB and SP designs to equal the β (i.e.,1−power) of a fully randomized
reference with the same n = r ·s, for (a) A and (b) B × A. For each of the four values of s, open circles
on the vertical axes show RPF-approx = q F(1 − α, p, qre f )/q F(1 − α, p, qalt ). a CB design R′

r (S′
s |A2)

versus FR design R′
r (S′

s (A2)). b SP design R′
r (B2|S′

s (A2)) versus FR design R′
r (S′

s (B2|A2))

MM-SP) design nevertheless always exceeds the relative performance of the CB (or
MM-CB) design for detection of treatment interactions when using unpooled error
terms in the analysis of the block design. The intuitive explanation of this difference is
that the SP design provides the same or more error degrees of freedom to test an effect
than does the CB design with unpooled error terms (Table 1). Although all designs
perform equally well given sufficient treatment replication, the CB design for a 2×2
treatment interaction approaches perfect relative performance more slowly than other
designs. Even at s = 20 blocks, its blocking factor must absorb 8 % of error variance
to achieve the power of an SP blocking factor that absorbs only 3 % (Fig. 2b compared
to c). When error terms are pooled in the analysis of blocked designs, the relative
performance of the CB design is always better than that of the SP design.

The tight banding of coloured lines in Fig. 2 indicates a flat response of performance
to power. Figure 3 illustrates for two designs how the error fraction changes little
across levels of power, and RPF-approx closely matches it at high power. We have
further analysed a wide range of other designs at α = 0.05 and 0.01, including main
effects and interactions in Latin squares, split-split-plot O’(B|R’(S’|A)), and split-
split-split-plot C|O’(B|R’(S’|A)) designs with and without pooling of error terms. All
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Fig. 4 Relative performance at α = 0.05 of a design with alternative treatment replication s to a refer-
ence s = 10 for the same design. Colour coding and factor levels as for Fig. 2, with lower β overlying
higher β. Error fractions assume equal r ; otherwise multiply responses by ralt /rre f . Open circles are the
RPF-approx = q F(1 − α, p, qre f )/q F(1 − α, p, qalt )×nalt /nre f , here with nalt /nre f = s/10. a FR
design S′

s (Aa). b FR design S′
s (Bb|Aa). c CB design R′

r (S′
s |Bb|Aa). d SP design R′

r (Bb|S′
s (Aa))

have features entirely consistent with those in Figs. 2 and 3: little variation in relative
performance across β for a given ratio of n, and the alternative design achieving the
power of a high-powered reference with an error fraction that is closely matched by
the proxy, particularly at low p or high s.

3.3 Optimising the trade-off between the number of replicates and their homogeneity

Here we consider experimental or mensurative tests that involve investigating the gen-
erality of fixed treatment effects across random spatial or temporal variation, which
generally means that the design is set by the test question. For a chosen design, the
investigator wishes to compare relative performance with different amounts of repli-
cation at relevant scales. This is often the case in field studies where replicates take
up space and therefore tend to be less homogeneous when there are more of them.

For treatment replication above or below a reference s = 10, Fig. 4 shows that the
criterion for equalling power is met with an error fraction that is almost identical across
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powers. It generally increases in linear proportion to the sample size. Thus a FR design
with sample size s = 20 instead of 10 sampling units accommodates a little over twice
the error variance without loss of power, regardless of the power of the less-replicated
reference; conversely, a design with s = 5 equals the power achieved by the reference
design of s = 10 with just less than half the error variance (Fig. 4a, b). All have the
threshold error fraction accurately predicted by RPF-approx (Fig. 4 open circles). More
generally for any design with s-dependent q, an alternative s twice the size of any
reference s gives (from Eq. 3): RPF-approx = q F(1 − α, p, qre f )/q F(1 − α, p,>

qre f )×2, and therefore RPF-approx > 2.
The worked example in the next section describes a typical issue for field studies,

of balancing the desire for more site replication to raise the regional scope of interest,
against the raised error variation that accompanies sampling from more sites. For
nested designs, different amounts of replication at the most nested level may involve
no change of error d.f., in which case RPF-approx = nalt/nre f . Consider the MM-SP
design from the motivating example. With r = 4 replicate pots per combination of
treatment levels, and s = 3 rooms per level of CO2, its n = 12. This design would
obtain twice the precision with r = 8 pots, giving n = 24 and therefore twice the
relative performance (RPF-approx = q F(0.95, 1, 4)/q F(0.95, 1, 4)×24/12 = 2, also
by exact calculation). This doubling of n by using twice as many pots can therefore
accommodate twice the error variance without loss of power. More than tripling the
error variance would be accommodated, however, if the doubling of n is achieved
instead by doubling the number of rooms per level of CO2, from 3 to 6 (approximated
by q F(0.95, 1, 4)/q F(0.95, 1, 10)×24/12 = 3.11).

3.4 Worked example

The barnacle Semibalanus balanoides has internal cross-fertilization in an entirely
sessile adult stage. Reproduction therefore depends on living within penis-reach of
neighbours. This life-history constraint inspired a field test of the hypothesis that
larval settlement on rocky shores is promoted by local clusters of resident adults
(Kent et al. 2003; Doncaster and Davey 2007). At the time of the study, the literature
on the species was insufficient to identify a threshold response, below which any
effect of cluster size could be deemed to cause negligible difference in reproductive
success. Previous field trials had suggested a seemingly interesting effect of cluster
size, however, with an estimated standardized effect size θ/σ = 1.6 across replicate
shores (from θ/σ = [(MS[effect] − MS[error])/(n·MS[error])]0.5, as described in
Kirk 1982).

The hypothesis was tested by measuring larval settlement density on patches of
rock each cleared of resident barnacles except for a central cluster of a few cm2

containing a set number of adults. The study aimed to draw conclusions relevant to
shores with both high and low background levels of larval recruitment from pelagic
waters. To this end, the cluster-size Treatment (B with 6 levels: 0, 2, 4, 8, 16, 32 adults
per cluster, each replicated three times) was repeated across two replicate Shores (S’)
nested in Recruitment (A with 2 levels: low, high). This configuration sets the design
as a replicated split plot for mixed model analysis: R′

3(B6|S′
2(A2)). Just two replicate
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shores would give power = 0.97 at α = 0.05 to detect a main effect of treatment B
even half the size of the previously estimated standardized effect size. The design stage
nevertheless demanded an evaluation of the benefits of sampling from more replicate
shores to achieve a wider geographical scope of inference, against the risk of thereby
accruing enough random spatial variation to reduce power despite the raised error d.f.

Options for replication can be evaluated by measuring the performance of an
alternative design with s = 3 shores per level of recruitment, relative to a ref-
erence with s = 2. The B and B × A terms of interest, both with 5 test d.f.,
share the same error term, B × S′(A) with q = 10×(s − 1) error d.f. Relative
performance is thus approximated by the n-weighted ratio of critical F quantiles:
RPF-approx = q F(0.95, 5, 10)/q F(0.95, 5, 20)×18/12 = 1.84. This means that sam-
pling from one extra shore at each level of recruitment is expected to accommodate
an 84 % increase in error variance without loss of power. This proxy for relative per-
formance has further utility as a rule of thumb for the error fraction at any matching
power. It indicates that power is likely to increase with more replication provided the
higher n raises the error variance by less than 84 %, even when the prior estimate of
power is based upon an imprecisely defined estimate of the standardized effect size.

The performance of the alternative relative to the reference design (s = 3 relative
to s = 2) is enumerated exactly for a threshold power, of say 0.8 at α = 0.05, by
calculating the reference and alternative standardized effect sizes θ/σ = 0.602 and
0.432 respectively for the B main effect (or 0.851 and 0.611 for B × A) required
to achieve this power. Then the error fraction defining relative performance of the
alternative design is precisely σ 2

alt/σ
2
re f = (0.602/0.432)2 = (0.851/0.611)2 = 1.94.

The proxy value of 1.84 was therefore slightly conservative with respect to the true
error fraction for matching a power of 0.8.

Kent et al. (2003) in fact attempted no such explicit assessments at the design
stage. Adding more shores was deemed certain to increase the error variance, because
it would require sampling along a wider stretch of coast that encompassed greater
heterogeneity in geology and ocean currents. It was therefore decided by an implicit
process to perform the study with just two shores per level of recruitment. The triple
replication of treatment patches on each shore, however, anticipated the possibility of
post-hoc pooling of error terms to raise the error d.f. (following Underwood 1997). In
the event the B × S′(A) term was too close to significance to allow pooling, but main
effects were anyway strongly significant and the B×A interaction far from significant.
With the information now available on relative performance, the cost in raised error
variance of adding two extra shores looks easily affordable, given the leeway of a near
doubling in error variance provided by the benefit of higher q. A three-shore design
could have used the same total of 72 patches with just two patch replicates per shore
(r×b×s×a = 2×6×3×2 instead of 3×6×2×2 = 72), in which case it would have
the same n = 6, and RPF-approx = q F(0.95, 5, 10)/q F(0.95, 5, 20) = 1.23.

4 Discussion

Studies that are designed for a specified effect threshold of interest can draw defini-
tive conclusions following rejection or retention of the null hypothesis (Lenth 2001;
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Bausell and Li 2002; Muller and Stewart 2006). The conclusions are definitive if the
study is designed for acceptably low probabilities both of mistakenly rejecting the
null hypothesis (the Type-I error at rate α), and of mistakenly retaining it (the Type-II
error at rate β, from which power= 1 − β). However, much research in the biological
sciences, and particularly in ecology and environmental sciences, concerns more pre-
liminary stages of detecting treatment effects without presuming to know how large
they must be to have an interesting influence on the system. Study designs for these
stages are ill-suited to power analysis, because power depends on effect size. Here we
have developed tools for evaluating design options at these stages for analyses of vari-
ance, where the choices involve different ways to structure nuisance variation and/or
different numbers of replicates sampled at random from the population of interest.

Any study that tests only for the presence of real effects, without setting a mini-
mum effect size of interest, cannot deliver definitive conclusions about non-significant
treatments (Lipsey 1990; Hoenig and Heisey 2001; Colegrave and Ruxton 2003; Bag-
uley 2004; Cumming 2008; Brosi and Biber 2009). Such studies must be regarded
as provisional because of the possibility that non-significant treatments include real
effects of potential interest that are too small in magnitude to be detected by the design.
Provisional studies encompass not just the small-scale pilots to estimate parameters
for power analysis, but all investigations with no predefined threshold of importance
for the effect size. Amongst countless examples, consider a dataset of butterfly biodi-
versity that shows significant reduction in response to only some components of global
climate change (e.g., Menendez et al. 2006). Any non-significant components cannot
be dismissed until we know enough to define a threshold loss of negligible impact on
ecosystems. Likewise, an experiment using Daphnia to test for effects of clonal diver-
sity on competitive advantage cannot interpret non-significant effects without setting
a threshold advantage of negligible impact on the community (Tagg et al. 2005).

Pilot or other studies can provide an estimate of the true error variance for prospec-
tive power analysis (Lenth 2001). They cannot inform on the true effect size, however,
which is a desired output of the proposed study. For provisional studies, power analy-
sis functions only to identify the ratio of true treatment effect size to error standard
deviation that yields a target power for a putative design. Investigators then need to
acknowledge the possibility that non-significant results may include real effects of
smaller size than this. The estimation of relative performance circumvents this issue,
and should therefore interest many experimental and field biologists. Since it holds
the effect size and the power constant, the error variance on which power depends
becomes an output, relative to a reference model, rather than an input requirement
as for the estimation of relative efficiency. Although some knowledge of unmeasured
variation is still required to interpret this output, it nevertheless informs on the work
required of blocking, replication or other design features to absorb background vari-
ation.

The literature on statistical power focuses heavily on the problem of estimating
power directly, usually in order to control its well-known sensitivity to error variance
by optimising sample size (e.g., Lipsey 1990; Bausell and Li 2002; Faul et al. 2007;
Maxwell et al. 2008). Comparisons of relative performance reverse this focus, by
treatingσ 2 as a response to power. As much as power is extremely sensitive to fractional
changes in σ 2, so the error fraction is insensitive to power, as demonstrated in Figs. 2,

123



256 Environ Ecol Stat (2014) 21:239–261

3 and 4. It makes sense to fix power in comparisons between alternative designs,
since most prospective applications of power analysis aim to optimise designs for
an acceptable level of power. Relative performance is a particularly useful concept
at planning stages when little is known about the sizes either of treatment effects or
variance components. For a given treatment, the choice between alternative designs
for eliminating unmeasured or nuisance variation will be informed by evaluating how
much needs to be absorbed in each alternative. Similarly, where the test question
prescribes a particular design, a financial cost to replication can be calibrated against a
benefit in greater scope of interest from accommodating proportionately more random
variation. Conversely, a financial cost to controlling random variation can be calibrated
against a proportionately cost-saving reduction in replication.

Our analysis of relative performance has throughout made the traditional ANOVA
assumptions of equal variance, normality, and independence of errors (or conditional
independence for a split plot analysis). Many ecological and environmental data violate
one or more assumption. Classically, non-normality and heteroscedasticity were dealt
with by transforming the response variable. However, transformation changes the
relationship between effects in the model, e.g. additive effects on the mean become
multiplicative effects on the median if the response is log transformed, and back
transformation does not estimate the mean (Stanton and Thiede 2005).

If the data violate the normality assumption, a generalized linear model (Hardin and
Hilbe 2012) may be appropriate. The methods proposed here are not needed for distri-
butions with a fixed scale parameter, e.g. Poisson or Binomial, because then variance
is a function of the mean and changing the experimental design will not necessarily
change the variance. Relative performance will be useful for distributions with esti-
mated scale parameters, e.g., the overdispersed Poisson or overdispersed Binomial
distributions, when inference is based on a t or F statistic.

If the data violate the equal variances assumption, there are at least five approaches
that could be used to make reasonable inferences: Welch’s F test (Welch 1951), the
modified F test (Brown and Forsythe 1974), White’s heteroscedastic consistent vari-
ance estimator (White 1980), a transformation to homoscedasticity (Dutilleul and
Potvin 1995; Dutilleul and Carrière 1998), and a Box-type adjustment (Brunner et
al. 1997). The Welch’s F test, modified F test, and Box-type adjustment change the
computation of the F statistic and use a Satterthwaite approximation for the degrees
of freedom. White’s approach recalculates the variance of the parameter estimates,
while Dutilleul’s transformation preserves the group means while transforming the
errors to independence and equal variance, for which the usual F test is appropriate.
Each of these leads to an F statistic, so relative performance can be used to compare
experimental designs. It will be harder to use relative performance with Welch’s F test,
the modified F test, or the Box-type adjustment because all three use a data-dependent
estimated degrees of freedom, so the F quantiles used to calculate relative performance
depend on more than the experimental design. Relative performance will be easiest
to interpret when changing the experimental design has the same multiplicative effect
on all variances.

If the data are correlated, they could be analysed using Dutilleul–Potvin–Carrière’s
transformation or a mixed model. Conditional on the model for the variance-covariance
matrix of the errors, and conditional on the estimated parameters in that variance-
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covariance model, the Cβ test statistics in a mixed model have F distributions (where
C is a matrix of comparison coefficients expressing the null hypothesis, and β is the
vector of parameters in a full rank or non-full rank model). Use of relative perfor-
mance in the mixed model is complicated by data-dependent degrees of freedom,
calculated either using a Satterthwaite approximation or a Kenward–Roger approxi-
mation (Kenward and Roger 1997). Relative performance will be easiest to interpret
when the variance-covariance matrix can be written as σ 2

1 V for one design and σ 2
2 V for

the other.
In conclusion, the n-weighted ratio of critical F quantiles provides a robust tool for

exploring alternative design options for sustaining power. The only inputs needed are
the critical values of F at given α and d.f., which are readily available from standard
tables or programs, and the effective sample sizes, n. This proxy for relative perfor-
mance has extra utility insofar as it approximates the error fraction at any matching
power and therefore indicates that power is likely to increase in the event of the alter-
native design achieving a better error fraction. Although imprecise, the proxy fits the
purpose of comparing designs for provisional studies, where power is estimated from
best guesses of the treatment effects and the error variance, rather than being a defining
component of the test question.
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Appendix: Derivation of n-weighted ratio of critical F quantiles for RPF-approx

Given two designs with different error degrees of freedom, we wish to find the ratio
of error variances that provides equal power for an arbitrary effect size.

Consider firstly the null hypothesis that the difference, δ, between two population
means is zero. We can test δ = 0 on two samples of size n with meansX̄1 and
X̄2 under the standard assumptions of independent, normally distributed errors with
constant variance, v. This is done by computing a statistic T = (X̄1 − X̄2)/

√
2 v/n,

and comparing |T | to qt (1 − α/2, q), the α/2 quantile of the t distribution with the
appropriate q error d.f.

For a study with δ �= 0, the power of the T -test is estimated by assuming that the error
variance, σ 2, equals v, and computing the non-centrality parameter, γ = δ/

√
2 · σ 2/n.

Then β = pt (qt (1 − α/2, q), q, γ ), the cumulative frequency to qt (1 − α/2, q) of a
non-central t distribution with q d.f., and non-centrality parameter γ . Power = 1 −β.

Two different study designs for 1 test d.f. can be compared analytically by approx-
imating the non-central t distribution by a γ -shifted t distribution (Anderson and
Hauck 1983). That is, pt (x, q, γ ) ≈ pt (x − γ, q). Setting x = qt (1 − α/2, q), we
obtain β = pt (qt (1 − α/2, q), q, γ ) ≈ pt (qt (1 − α/2, q) − γ, q). At α = 0.05, the
approximate β lies within ±0.01 of all exact β < 0.3. The symmetrical t distribution
with q d.f. has cumulative frequency β = pt (qt (β, q), q), leading to the following
approximation relating the difference in two means δ, the type-I error rate α, the type-II
error rate β, the effective sample size n, and the error variance σ 2:
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δ = [qt (1 − α/2, q) − qt (β, q)] ·
√

2 · σ 2/n. (7)

We apply Eq. (7) to a reference design with effective sample size nre f , error variance
σ 2

re f and error d.f. qre f , and to an alternative design with effective sample size nalt ,

error variance σ 2
alt and error d.f. qalt . If reference and alternative designs have the

same power to detect the same difference δ, then

δ = [qt (1 − α/2, qalt ) − qt (β, qalt )] ·
√

2 · σ 2
alt/nalt

= [
qt

(
1 − α/2, qre f

) − qt
(
β, qre f

)] ·
√

2 · σ 2
re f /nre f (8)

Rearranging (8), the two designs have the same power when

σ 2
alt

σ 2
re f

=
[

qt
(
1 − α/2, qre f

) − qt
(
β, qre f

)
qt (1 − α/2, qalt ) − qt (β, qalt )

]2

× nalt

nre f
. (9)

Equation (9) approximates the error fraction required of an alternative design
to match the power of a reference design, which we refer to as its relative perfor-
mance (RP). For example, in a spatial treatment application, natural variability may
be absorbed by using fewer replicates each of larger size (Sects. 3.3–3.4). A reference
design with n = 10 replicates per sample has qre f = 18, and an alternative design
with n = 5 has qalt = 8. The RP of the alternative design, in terms of its error frac-
tion σ 2

alt/σ
2
re f required to match a power of 1 − β = 0.8 for the reference design, is

approximated by:

RPt-approx =
[

qt (0.975, 18) − qt (0.2, 18)

qt (0.975, 8) − qt (0.2, 8)

]2

× 5

10
= 0.430. (10)

Thus the use of half as many replicates sustains 80 % power if it reduces natural
variability by at least 57 %.

The t-test approach underlying Eqs. (9)–(10) applies only to tests of differences
between 2 treatments or a 1-d.f. contrast among multiple treatments. We generalize
relative performance to any F test with the approximation for σ 2

alt/σ
2
re f at matching

power:

RPF-approx = q F
(
1 − α, p, qre f

)
q F (1 − α, p, qalt )

× nalt

nre f
, (11)

where q F(1 − α, p, q) is the α quantile of the F distribution with p numerator and q
denominator d.f. associated with the test hypothesis. If the hypothesis has 1 d.f., then
q F(1 −α, 1, q) = qt (1 −α/2, q)2. In this case, RPF-approx exactly equals RPt-approx
in four situations:

(1) When power = 0.5, so qt (β, q) = 0;
(2) When power = 1 − α/2, so qt (β, q) = −qt (1 − α/2, q);
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(3) When the ratios of quantiles are the same, so qt (β, qre f )/qt (β, qalt ) = qt (1 −
α/2, qre f )/qt (1 − α/2, qalt );

(4) When qalt = qre f , so RP = nalt/nre f ; also by exact calculation.

For intermediate cases with 1 test d.f., RPF-approx is an approximation of RPt-approx.
For example, the Eq. (10) result of RPt-approx = 0.430 has a corresponding
RPF-approx = 0.415 given by Eq. (11). The quality of this approximation is evalu-
ated in Fig. 4a against precise calculation of σ 2

alt/σ
2
re f = 0.428 to sustain power = 0.8.

The application of Eq. (11) to p > 1 has a similar derivation. Here β =
pF(q F(1 − α, p, q), p, q, λ), the cumulative frequency to the α quantile of a non-
central F distribution with non-centrality parameter λ. This is approximated by a
shifted F distribution (Patnaik 1949): β ≈ pF(q F(1 − α, p, q)·k, p′, q), where
k = p/(p + λ) and p′ = (p + λ)2/(p + 2·λ). The F distribution with p′ test d.f. and
q error d.f. has β = pF(q F(β, p′, q), p′, q), leading to the approximation:

k = q F(β, p′, q)/q F(1 − α, p, q). (12)

Given the non-centrality parameter λ = p·n·θ2/σ 2, Eq. (12) rearranges to

θ2 =
[

q F (1 − α, p, q)

q F (β, p′, q)
− 1

]
×σ 2

n
. (13)

We apply Eq. (13) to a reference design with effective sample size nre f , error
variance σ 2

re f , test d.f. p and p′
re f , and error d.f. qre f , and to an alternative design with

effective sample size nalt , error variance σ 2
alt , test d.f. p and p′

alt , and error d.f. qalt .
If reference and alternative designs have the same power to detect the same effect size
θ , then the approximate error fraction of the alternative design is

σ 2
alt

σ 2
re f

=
q F

(
1 − α, p, qre f

) − q F
(
β, p′

re f , qre f

)
q F (1 − α, p, qalt ) − q F

(
β, p′

alt , qalt
) × q F

(
β, p′

alt , qalt
)

q F
(
β, p′

re f , qre f

)× nalt

nre f
.

(14)

The values of the β quantiles of the F distribution in Eq. (14) are not precisely
determinable for reference and alternative p′ test d.f., which themselves depend on
the unmeasured reference and alternative θ2/σ 2. At small β, nevertheless, λalt ≈ λre f

meaning that p′
alt ≈ p′

re f , and the quantiles are relatively insensitive to q, such that
q F(β, p′

alt , qalt )/q F(β, p′
re f , qre f ) ≈ 1. In addition, low p gives these β quantiles

values close to zero, resulting in Eq. (11) holding approximately for RPF-approx. For
p > 10, a closer approximation is

RPF-approx = q F
(
1 − α, p, qre f

) − 1

q F (1 − α, p, qalt ) − 1
× nalt

nre f
. (15)
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The quality of these approximations is evaluated in main-text Sect. 3 against precise
calculations of σ 2

alt/σ
2
re f to sustain power values of 0.99, 0.8, 0.5, 0.2 at α = 0.05 for

a range of designs and n.
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